Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genes

نویسندگان

  • Emily Garner
  • Joshua S. Wallace
  • Gustavo Arango Argoty
  • Caitlin Wilkinson
  • Nicole Fahrenfeld
  • Lenwood S. Heath
  • Liqing Zhang
  • Mazdak Arabi
  • Diana S. Aga
  • Amy Pruden
چکیده

Record-breaking floods in September 2013 caused massive damage to homes and infrastructure across the Colorado Front Range and heavily impacted the Cache La Poudre River watershed. Given the unique nature of this watershed as a test-bed for tracking environmental pathways of antibiotic resistance gene (ARG) dissemination, we sought to determine the impact of extreme flooding on ARG reservoirs in river water and sediment. We utilized high-throughput DNA sequencing to obtain metagenomic profiles of ARGs before and after flooding, and investigated 23 antibiotics and 14 metals as putative selective agents during post-flood recovery. With 277 ARG subtypes identified across samples, total bulk water ARGs decreased following the flood but recovered to near pre-flood abundances by ten months post-flood at both a pristine site and at a site historically heavily influenced by wastewater treatment plants and animal feeding operations. Network analysis of de novo assembled sequencing reads into 52,556 scaffolds identified ARGs likely located on mobile genetic elements, with up to 11 ARGs per plasmid-associated scaffold. Bulk water bacterial phylogeny correlated with ARG profiles while sediment phylogeny varied along the river's anthropogenic gradient. This rare flood afforded the opportunity to gain deeper insight into factors influencing the spread of ARGs in watersheds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs

Rates of infection with antibiotic-resistant bacteria have increased precipitously over the past several decades, with far-reaching healthcare and societal costs. Recent evidence has established a link between antibiotic resistance genes in human pathogens and those found in non-pathogenic, commensal, and environmental organisms, prompting deeper investigation of natural and human-associated re...

متن کامل

Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes.

The environment harbours a significant diversity of uncultured bacteria and a potential source of novel and extant resistance genes which may recombine with clinically important bacteria disseminated into environmental reservoirs. There is evidence that pollution can select for resistance due to the aggregation of adaptive genes on mobile elements. The aim of this study was to establish the imp...

متن کامل

Distribution and Quantification of Antibiotic Resistant Genes and Bacteria across Agricultural and Non-Agricultural Metagenomes

There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals...

متن کامل

Distribution of Antibiotic Resistance Genes among the Phylogroups of Escherichia coli in Diarrheic Calves and Chickens Affected by Colibacillosis in Tehran, Iran

Antibiotic resistance occurs in the endogenous flora of exposed population in addition to pathogenic bacteria. This study was conducted to evaluate the distribution of antibiotic resistance genes among 63 isolates of Escherichia coli of Escherichia coli (E. coli) in diarrheic calves and poultry. According to the results, B1 and B2 were the most prevalent phylogroups of E. coli in calves and pou...

متن کامل

Functional metagenomics for the investigation of antibiotic resistance

Antibiotic resistance is a major threat to human health and well-being. To effectively combat this problem we need to understand the range of different resistance genes that allow bacteria to resist antibiotics. To do this the whole microbiota needs to be investigated. As most bacteria cannot be cultivated in the laboratory, the reservoir of antibiotic resistance genes in the non-cultivatable m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016